Your browser (Unknown 0) is no longer supported. Some parts of the website may not work correctly. Please update your browser.

AVAILABLE LESSONS:

Lesson 1

Iterations

Lesson 2

Arrays

Lesson 3

Time Complexity

Lesson 4

Counting Elements

Lesson 5

Prefix Sums

Lesson 6

Sorting

Lesson 7

Stacks and Queues

Lesson 8

Leader

Lesson 9

Maximum slice problem

Lesson 10

Prime and composite numbers

Lesson 11

Sieve of Eratosthenes

Lesson 12

Euclidean algorithm

Lesson 13

Fibonacci numbers

Lesson 14

Binary search algorithm

Lesson 15

Caterpillar method

Lesson 16

Greedy algorithms

Lesson 17

Dynamic programming

Lesson 99

Future training

Calculate the number of elements of an array that are not divisors of each element.

Spoken language:

You are given an array A consisting of N integers.

For each number A[i] such that 0 ≤ i < N, we want to count the number of elements of the array that are not the divisors of A[i]. We say that these elements are non-divisors.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Assume that the following declarations are given:

struct Results { int * C; int L; // Length of the array };

Write a function:

struct Results solution(int A[], int N);

that, given an array A consisting of N integers, returns a sequence of integers representing the amount of non-divisors.

Result array should be returned as a structure `Results`.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

Copyright 2009–2024 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

You are given an array A consisting of N integers.

For each number A[i] such that 0 ≤ i < N, we want to count the number of elements of the array that are not the divisors of A[i]. We say that these elements are non-divisors.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

vector<int> solution(vector<int> &A);

that, given an array A consisting of N integers, returns a sequence of integers representing the amount of non-divisors.

Result array should be returned as a vector of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

Copyright 2009–2024 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

You are given an array A consisting of N integers.

For each number A[i] such that 0 ≤ i < N, we want to count the number of elements of the array that are not the divisors of A[i]. We say that these elements are non-divisors.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

vector<int> solution(vector<int> &A);

that, given an array A consisting of N integers, returns a sequence of integers representing the amount of non-divisors.

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

Copyright 2009–2024 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

class Solution { public int[] solution(int[] A); }

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

List<int> solution(List<int> A);

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

func Solution(A []int) []int

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

class Solution { public int[] solution(int[] A); }

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

class Solution { public int[] solution(int[] A); }

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

function solution(A);

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

fun solution(A: IntArray): IntArray

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

function solution(A)

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

Note: All arrays in this task are zero-indexed, unlike the common Lua convention. You can use `#A` to get the length of the array A.

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

NSMutableArray * solution(NSMutableArray *A);

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Assume that the following declarations are given:

Results = record C : array of longint; L : longint; {Length of the array} end;

Write a function:

function solution(A: array of longint; N: longint): Results;

Result array should be returned as a record `Results`.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

function solution($A);

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

sub solution { my (@A) = @_; ... }

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

def solution(A)

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

def solution(a)

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

object Solution { def solution(a: Array[Int]): Array[Int] }

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

public func solution(_ A : inout [Int]) -> [Int]

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

function solution(A: number[]): number[];

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].

You are given an array A consisting of N integers.

For example, consider integer N = 5 and array A such that:

For the following elements:

- A[0] = 3, the non-divisors are: 2, 6,
- A[1] = 1, the non-divisors are: 3, 2, 3, 6,
- A[2] = 2, the non-divisors are: 3, 3, 6,
- A[3] = 3, the non-divisors are: 2, 6,
- A[4] = 6, there aren't any non-divisors.

Write a function:

Private Function solution(A As Integer()) As Integer()

Result array should be returned as an array of integers.

For example, given:

the function should return [2, 4, 3, 2, 0], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..50,000];
- each element of array A is an integer within the range [1..
2 * N].