Your browser (Unknown 0) is no longer supported. Some parts of the website may not work correctly. Please update your browser.

UPCOMING CHALLENGES:

CURRENT CHALLENGES:

Neon 2014

PAST CHALLENGES

Fluorum 2014

Oxygenium 2014

Nitrogenium 2013

Carbo 2013

Boron 2013

Beryllium 2013

Lithium 2013

Helium 2013

Hydrogenium 2013

Omega 2013

Psi 2012

Chi 2012

Phi 2012

Upsilon 2012

Tau 2012

Sigma 2012

Rho 2012

Pi 2012

Omicron 2012

Xi 2012

Nu 2011

Mu 2011

Lambda 2011

Kappa 2011

Iota 2011

Theta 2011

Eta 2011

Zeta 2011

Epsilon 2011

Delta 2011

Gamma 2011

December 2010

PrefixSet edition (2010-10)

Spoken language:

You are given N round clocks.

Every clock has M hands, and these hands can point to positions 1, 2, 3, ..., P (yes, these represent numbers around each face). The clocks are represented by the matrix A consisting of N rows and M columns of integers. The first row represents the hands of the first clock, and so on.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

You can rotate the clocks to obtain several clocks that look identical. For example, if you rotate the third, fourth and fifth clocks you can obtain the following clocks:

After rotation, the first, third and fourth clocks look the same, and the second clock looks the same as the fifth one. That means there are four pairs of clocks that look the same: (1, 3), (1, 4), (2, 5) and (3, 4).

Write a function:

int solution(int **A, int N, int M, int P);

that, given a zero-indexed matrix A consisting of N rows and M columns of integers and integer P, returns the maximal number of pairs of clocks that can look the same after rotation.

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

Copyright 2009–2024 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

You are given N round clocks.

Every clock has M hands, and these hands can point to positions 1, 2, 3, ..., P (yes, these represent numbers around each face). The clocks are represented by the matrix A consisting of N rows and M columns of integers. The first row represents the hands of the first clock, and so on.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

You can rotate the clocks to obtain several clocks that look identical. For example, if you rotate the third, fourth and fifth clocks you can obtain the following clocks:

After rotation, the first, third and fourth clocks look the same, and the second clock looks the same as the fifth one. That means there are four pairs of clocks that look the same: (1, 3), (1, 4), (2, 5) and (3, 4).

Write a function:

int solution(vector< vector<int> > &A, int P);

that, given a zero-indexed matrix A consisting of N rows and M columns of integers and integer P, returns the maximal number of pairs of clocks that can look the same after rotation.

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

Copyright 2009–2024 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

You are given N round clocks.

Every clock has M hands, and these hands can point to positions 1, 2, 3, ..., P (yes, these represent numbers around each face). The clocks are represented by the matrix A consisting of N rows and M columns of integers. The first row represents the hands of the first clock, and so on.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

You can rotate the clocks to obtain several clocks that look identical. For example, if you rotate the third, fourth and fifth clocks you can obtain the following clocks:

After rotation, the first, third and fourth clocks look the same, and the second clock looks the same as the fifth one. That means there are four pairs of clocks that look the same: (1, 3), (1, 4), (2, 5) and (3, 4).

Write a function:

int solution(vector< vector<int> > &A, int P);

that, given a zero-indexed matrix A consisting of N rows and M columns of integers and integer P, returns the maximal number of pairs of clocks that can look the same after rotation.

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

Copyright 2009–2024 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

class Solution { public int solution(int[][] A, int P); }

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

int solution(List<List<int>> A, int P);

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

func Solution(A [][]int, P int) int

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

class Solution { public int solution(int[][] A, int P); }

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

class Solution { public int solution(int[][] A, int P); }

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

function solution(A, P);

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

fun solution(A: Array<IntArray>, P: Int): Int

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

function solution(A, P)

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

int solution(NSMutableArray *A, int P);

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Assume that the following declarations are given:

type TMatrix = array of array of longint;

Write a function:

function solution(A: TMatrix; N: longint; M: longint; P: longint): longint;

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

function solution($A, $P);

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

sub solution { my ($A, $P) = @_; my @A = @$A; ... }

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

def solution(A, P)

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

def solution(a, p)

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

object Solution { def solution(a: Array[Array[Int]], p: Int): Int }

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

public func solution(_ A : inout [[Int]], _ P : Int) -> Int

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

function solution(A: number[][], P: number): number;

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.

You are given N round clocks.

For example, you are given matrix A consisting of five rows and two columns, and P = 4:

Write a function:

Private Function solution(A As Integer()(), P As Integer) As Integer

For example, given the following array A and P = 4:

the function should return 4, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..500];
- P is an integer within the range [1..1,000,000,000];
- each element of matrix A is an integer within the range [1..P];
- the elements of each row of matrix A are all distinct.