Your browser (Unknown 0) is no longer supported. Some parts of the website may not work correctly. Please update your browser.

UPCOMING CHALLENGES:

CURRENT CHALLENGES:

Neon 2014

PAST CHALLENGES

Fluorum 2014

Oxygenium 2014

Nitrogenium 2013

Carbo 2013

Boron 2013

Beryllium 2013

Lithium 2013

Helium 2013

Hydrogenium 2013

Omega 2013

Psi 2012

Chi 2012

Phi 2012

Upsilon 2012

Tau 2012

Sigma 2012

Rho 2012

Pi 2012

Omicron 2012

Xi 2012

Nu 2011

Mu 2011

Lambda 2011

Kappa 2011

Iota 2011

Theta 2011

Eta 2011

Zeta 2011

Epsilon 2011

Delta 2011

Gamma 2011

December 2010

PrefixSet edition (2010-10)

For each element of an array of integers, find the closest larger element.

Spoken language:

Consider an array A of N integers. Indices of this array are integers from 0 to N−1. Take an index K. Index J is called an *ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

Ascender J of K is called *the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

If K = 3 then K has two ascenders: 7 and 8. Its closest ascender is 7 and distance between K and 7 equals **abs**(K−7) = 4.

Assume that the following declarations are given:

struct Results { int * R; int N; // Length of the array };

Write a function:

struct Results solution(int A[], int N);

that, given an array A of N integers, returns an array R of N integers, such that (for K = 0,..., N−1):

- if K has the closest ascender J, then R[K] =
abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as a structure `Results`.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

Copyright 2009–2024 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

Consider an array A of N integers. Indices of this array are integers from 0 to N−1. Take an index K. Index J is called an *ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

Ascender J of K is called *the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

If K = 3 then K has two ascenders: 7 and 8. Its closest ascender is 7 and distance between K and 7 equals **abs**(K−7) = 4.

Write a function:

vector<int> solution(vector<int> &A);

that, given an array A of N integers, returns an array R of N integers, such that (for K = 0,..., N−1):

- if K has the closest ascender J, then R[K] =
abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as a vector of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

Copyright 2009–2024 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

Consider an array A of N integers. Indices of this array are integers from 0 to N−1. Take an index K. Index J is called an *ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

Ascender J of K is called *the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

If K = 3 then K has two ascenders: 7 and 8. Its closest ascender is 7 and distance between K and 7 equals **abs**(K−7) = 4.

Write a function:

vector<int> solution(vector<int> &A);

that, given an array A of N integers, returns an array R of N integers, such that (for K = 0,..., N−1):

- if K has the closest ascender J, then R[K] =
abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

Copyright 2009–2024 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

class Solution { public int[] solution(int[] A); }

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

List<int> solution(List<int> A);

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

func Solution(A []int) []int

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

class Solution { public int[] solution(int[] A); }

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

class Solution { public int[] solution(int[] A); }

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

function solution(A);

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

fun solution(A: IntArray): IntArray

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

function solution(A)

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

Note: All arrays in this task are zero-indexed, unlike the common Lua convention. You can use `#A` to get the length of the array A.

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

NSMutableArray * solution(NSMutableArray *A);

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Assume that the following declarations are given:

Results = record R : array of longint; N : longint; {Length of the array} end;

Write a function:

function solution(A: array of longint; N: longint): Results;

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as a record `Results`.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

function solution($A);

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

sub solution { my (@A) = @_; ... }

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

def solution(A)

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

def solution(a)

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

object Solution { def solution(a: Array[Int]): Array[Int] }

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

public func solution(_ A : inout [Int]) -> [Int]

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

function solution(A: number[]): number[];

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].

*ascender* of K if A[J] > A[K]. Note that if A[K] is a maximal value in the array A, then K has no ascenders.

*the closest ascender* of K if **abs**(K−J) is the smallest possible value (that is, if the distance between J and K is minimal). Note that K can have at most two closest ascenders: one smaller and one larger than K.

For example, let us consider the following array A:

**abs**(K−7) = 4.

Write a function:

Private Function solution(A As Integer()) As Integer()

abs(K−J); that is, R[K] is equal to the distance between J and K,- if K has no ascenders then R[K] = 0.

For example, given the following array A:

the function should return the following array R:

Result array should be returned as an array of integers.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..50,000];
- each element of array A is an integer within the range [−1,000,000,000..1,000,000,000].