Codility_
Chapter 7

Stacks and Queues

Here are described two structures used for storage of elements. The structures will provide
two operations: push (inserting the new element to the structure) and pop (removing some
element from the structure).

7.1. Stack

The stack is a basic data structure in which the insertion of new elements takes place at
the top and deletion of elements also takes place from the top. The idea of the stack can
be illustrated by plates stacked on top of one another. Each new plate is placed on top of
the stack of plates (operation push), and plates can only be taken off the top of the stack
(operation pop).

8] E 8] El
3
push(6) pop pop push(3) pop

The stack can be represented by an array for storing the elements. Apart of the array, we
should also remember the size of the stack and we must be sure to declare sufficient space
for the array (in the following implementation we can store N elements).

7.1: Push / pop function — O(1).

1 stack = [0] * N

2 size =0

3 def push (x):

4 global size

5 stack[size] = x
6 size += 1

7 def pop():

8 global size

9 size —-= 1

return stack([size]

-
o

The push function adds an element to the stack. The pop function removes and returns the
most recently pushed element from the stack. We shouldn’t perform a pop operation on an
empty stack.

© Copyright 2020 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.



7.2. Queue

The queue is a basic data structure in which new elements are inserted at the back but old
elements are removed from the front. The idea of the queue can be illustrated by a line of
customers in a grocery store. New people join the back of the queue and the next person to
be served is the first one in the line.

tail tail tail tail tail
|
Ehe) @ @ ——op @ ) @
T P P
head head head head head

The queue can be represented by an array for storing the elements. Apart of the array, we
should also remember the front (head) and back (tail) of the queue. We must be sure to
declare sufficient space for the array (in the following implementation we can store N — 1
elements).

7.2: Push / pop / size / empty function — O(1).

1 queue = [0] = N

2 head, tail = 0, O

3 def push (x):

4 global tail

5 tail = (tail + 1) % N
6 queue [tail] = x

7 def pop():

8 global head

9 head = (head + 1) % N
10 return queue [head]

11 def size():

12 return (tail - head + N) % N
13 def empty():

14 return head == tail

Notice that in the above implementation we used cyclic buffer (you can read about it more
at http://en.wikipedia.org/wiki/Circular__buffer).

The push function adds an element to the queue. The pop function removes and returns
an element from the front of the queue (we shouldn’t perform a pop operation on an empty
queue). The empty function check whether the queue is empty and the size function returns
the number of elements in the queue.

7.3. Exercises

Problem: You are given a zero-indexed array A consisting of n integers: ag,ai,...,0n_1.
Array A represents a scenario in a grocery store, and contains only Os and/or 1s:

e 0 represents the action of a new person joining the line in the grocery store,

e 1 represents the action of the person at the front of the queue being served and leaving
the line.

The goal is to count the minimum number of people who should have been in the line before
the above scenario, so that the scenario is possible (it is not possible to serve a person if the
line is empty).



Solution O(n): We should remember the size of the queue and carry out a simulation of
people arriving at and leaving the grocery store. If the size of the queue becomes a negative
number then that sets the lower limit for the number of people who had to stand in the line
previously. We should find the smallest negative number to determine the size of the queue
during the whole simulation.

7.3: Model solution — O(n).

1 def grocery_store (A):

2 n = len(A)

3 size, result = 0, 0
4 for i in xrange (n):
5 if A[i] == 0:

6 size += 1

7 else:

8 size —= 1

9 result = max(result, -size)
10 return result

The total time complexity of the above algorithm is O(n). The space complexity is O(1)
because we don’t store people in the array, but only remember the size of the queue.

Every lesson will provide you with programming tasks at http://codility.com/programmers.



