
Chapter 6

Sorting

Sorting is the process of arranging data in a certain order. Usually, we sort by the value of
the elements. We can sort numbers, words, pairs, etc. For example, we can sort students by
their height, and we can sort cities in alphabetical order or by their numbers of citizens. The
most-used orders are numerical order and alphabetical order. Let’s consider the simplest set,
an array consisting of integers:

5 2 8 14 1 16
0 1 2 3 4 5

We want to sort this array into numerical order to obtain the following array:

1 2 5 8 14 16
0 1 2 3 4 5

There are many sorting algorithms, and they differ considerably in terms of their time com-
plexity and use of memory. Here we describe some of them.

6.1. Selection sort

The idea: Find the minimal element and swap it with the first element of an array. Next,
just sort the rest of the array, without the first element, in the same way.

Notice that after k iterations (repetition of everything inside the loop) the first k elements
will be sorted in the right order (this type of a property is called the loop invariant).

6.1: Selection sort — O(n2).

1 def selectionSort(A):
2 n = len(A)
3 for k in xrange(n):
4 minimal = k
5 for j in xrange(k + 1, n):
6 if A[j] < A[minimal]:
7 minimal = j
8 A[k], A[minimal] = A[minimal], A[k] # swap A[k] and A[minimal]
9 return A

The time complexity is quadratic.

c� Copyright 2020 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.

1



6.2. Counting sort
The idea: First, count the elements in the array of counters (see chapter 2). Next, just iterate
through the array of counters in increasing order.

Notice that we have to know the range of the sorted values. If all the elements are in the
set {0, 1, . . . , k}, then the array used for counting should be of size k + 1. The limitation here
may be available memory.

6.2: Counting sort — O(n + k)

1 def countingSort(A, k):
2 n = len(A)
3 count = [0] * (k + 1)
4 for i in xrange(n):
5 count[A[i]] += 1
6 p = 0
7 for i in xrange(k + 1):
8 for j in xrange(count[i]):
9 A[p] = i

10 p += 1
11 return A

The time complexity here is O(n + k). We need additional memory O(k) to count all the
elements. At first sight, the time complexity of the above implementation may appear greater.
However, all the operations in lines 9 and 10 are performed not more than O(n) times.

6.3. Merge sort
The idea: Divide the unsorted array into two halves, sort each half separately and then just
merge them. After the split, each part is halved again.

We repeat this algorithm until we end up with individual elements, which are sorted by
definition. The merging of two sorted arrays consisting of k elements takes O(k) time; just
repeatedly choose the lower of the first elements of the two merged parts.

The length of the array is halved on each iteration. In this way, we get consecutive levels
with 1, 2, 4, 8, . . . slices. For each level, the merging of the all consecutive pairs of slices requires
O(n) time. The number of levels is O(log n), so the total time complexity is O(n log n) (read
more at http://en.wikipedia.org/wiki/Merge_sort).

6.4. Sorting functions
If the range of sorted values is unknown then there are algorithms which sort all the values in
O(n log n) time. A big advantage of many programming languages are their built-in sorting
functions. If you want to sort a list in Python, you can do it with only one line of code.

6.3: Built-in sort — O(n log n)

1 A.sort()

The time complexity of this sorting function is O(n log n). Generally, sorting algorithms use
very interesting ideas which can be used in other problems. It is worth knowing how they
work, and it is also worth implementing them yourself at least once. In the future you can
use the built-in sorting functions, because their implementations will be faster and they make
your code shorter and more readable.

2



6.5. Exercise

Problem: You are given a zero-indexed array A consisting of n > 0 integers; you must return
the number of unique values in array A.
Solution O(n log n): First, sort array A; similar values will then be next to each other.
Finally, just count the number of distinct pairs in adjacent cells.

6.4: The number of distinct values — O(n log n).

1 def distinct(A):
2 n = len(A)
3 A.sort()
4 result = 1
5 for k in xrange(1, n):
6 if A[k] != A[k - 1]:
7 result += 1
8 return result

The time complexity is O(n log n), in view of the sorting time.

Every lesson will provide you with programming tasks at http://codility.com/programmers.

3


