
Chapter 13

Fibonacci numbers

The Fibonacci numbers form a sequence of integers defined recursively in the following way.
The first two numbers in the Fibonacci sequence are 0 and 1, and each subsequent number
is the sum of the previous two.

Fn =





0 for n = 0,
1 for n = 1,
Fn−1 + Fn−2 for n > 1.

The first twelve Fibonacci numbers are:

0 1 1 2 3 5 8 13 21 34 55 89
0 1 2 3 4 5 6 7 8 9 10 11

Notice that recursive enumeration as described by the definition is very slow. The definition
of Fn repeatedly refers to the previous numbers from the Fibonacci sequence.

13.1: Finding Fibonacci numbers recursively.

1 def fibonacci(n):
2 if (n <= 1):
3 return n
4 return fibonacci(n - 1) + fibonacci(n - 2)

The above algorithm performs Fn additions of 1, and, as the sequence grows exponentially,
we get an inefficient solution.

Enumeration of the Fibonacci numbers can be done faster simply by using a basis of
dynamic programming. We can calculate the values F0, F1, . . . , Fn based on the previously
calculated numbers (it is sufficient to remember only the last two values).

13.2: Finding Fibonacci numbers dynamically.

1 def fibonacciDynamic(n):
2 fib = [0] * (n + 2)
3 fib[1] = 1
4 for i in xrange(2, n + 1):
5 fib[i] = fib[i - 1] + fib[i - 2]
6 return fib[n]

The time complexity of the above algorithm is O(n).

c� Copyright 2020 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.

1



13.1. Faster algorithms for Fibonacci numbers
Fibonacci numbers can be found in O(log n) time. However, for this purpose we have to use
matrix multiplication and the following formula:

�
1 1
1 0

�n

=
�
Fn+1 Fn

Fn Fn−1

�
, for n � 1.

Even faster solution is possible by using the following formula:

Fibn =
(1+

√
5

2 )n − (1−
√

5
2 )n

√
5

(13.1)

These algorithms are not trivial and it will be presented in the future lessons.

13.2. Exercise

Problem: For all the given numbers x0, x1, . . . , xn−1, such that 1 � xi � m � 1 000 000,
check whether they may be presented as the sum of two Fibonacci numbers.
Solution: Notice that only a few tens of Fibonacci numbers are smaller than the maximal
m (exactly 31). We consider all the pairs. If some of them sum to k � m, then we mark
index k in the array to denote that the value k can be presented as the sum of two Fibonacci
numbers.

In summary, for each number xi we can answer whether it is the sum of two Fibonacci
numbers in constant time. The total time complexity is O(n + m).

Every lesson will provide you with programming tasks at http://codility.com/programmers.

2


