
Chapter 2

Arrays

Array is a data-structure that can be used to store many items in one place. Imagine that we
have a list of items; for example, a shopping list. We don’t keep all the products on separate
pages; we simply list them all together on a single page. Such a page is conceptually similar
to an array. Similarly, if we plan to record air temperatures over the next 365 days, we would
not create lots of individual variables, but would instead store all the data in just one array.

2.1. Creating an array
We want to create a shopping list containing three products. Such a list might be created as
follows:

shopping = [’bread’, ’butter’, ’cheese’]

(that is, shopping is the name of the array and every product within it is separated by
a comma). Each item in the array is called an element. Arrays can store any number of
elements (assuming that there is enough memory). Note that a list can be also empty:

shopping = []

If planning to record air temperatures over the next 365 days, we can create in advance
a place to store the data. The array can be created in the following way:

temperatures = [0] * 365

(that is, we are creating an array containing 365 zeros).

2.2. Accessing array values
Arrays provide easy access to all elements. Within the array, every element is assigned a num-
ber called an index. Index numbers are consecutive integers starting from 0. For example, in
the array shopping = [’bread’, ’butter’, ’cheese’], ’bread’ is at index 0, ’but-
ter’ is at index 1 and ’cheese’ is at index 2. If we want to check what value is located at some
index (for example, at index 1), we can access it by specifing the index in square brackets,
e.g. shopping[1].

c� Copyright 2020 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.

1



2.3. Modifying array values
We can change array elements as if they were separate variables, that is each array element
can be assigned a new value independently. For example, let’s say we want to record that on
the 42nd day of measurement, the air temperature was 25 degrees. This can be done with a
single assignment:

temperatures[42] = 25

If there was one more product to add to our shopping list, it could be appended as follows:

shopping += [’eggs’]

The index for that element will be the next integer after the last (in this case, 3).

2.4. Iterating over an array
Often we need to iterate over all the elements of an array; perhaps to count the number of
specified items, for example. Knowing that the array contains of N elements, we can iterate
over consecutive integers from index 0 to index N −1 and check every such index. The length
of an array can be found using the len() function. For example, counting the number of
items in shopping list can be done quickly as follows:

N = len(shopping)

Let’s write a function that counts the number of days with negative air temperature.

2.1: Negative air temperature.

1 def negative(temperatures):
2 N = len(temperatures)
3 days = 0
4 for i in xrange(N):
5 if temperatures[i] < 0:
6 days += 1
7 return days

Instead of iterating over indexes, we can iterate over the elements of the array. To do this,
we can simply write:

1 for item in array:
2 ...

For example, the above solution can be simplified as follows:

2.2: Negative air temperature — simplified.

1 def negative(temperatures):
2 days = 0
3 for t in temperatures:
4 if t < 0:
5 days += 1
6 return days

In the above solution, for every temperature, we increase the number of days with a negative
temperature if the number is lower than zero.

2



2.5. Basic array operations
There are a few basic operations on arrays that are very useful. Apart from the length
operation:

len([1, 2, 3]) == 3

and the repetition:

[’Hello’] * 3 == [’Hello’, ’Hello’, ’Hello’]

which we have already seen, there is also concatenation:

[1, 2, 3] + [4, 5, 6] == [1, 2, 3, 4, 5, 6]

which merges two lists, and the membership operation:

’butter’ in [’bread’, ’butter’, ’cheese’] == True

which checks for the presence of a particular item in the array.

2.6. Exercise

Problem: Given array A consisting of N integers, return the reversed array.
Solution: We can iterate over the first half of the array and exchange the elements with
those in the second part of the array.

2.3: Reversing an array.

1 def reverse(A):
2 N = len(A)
3 for i in xrange(N // 2):
4 k = N - i - 1
5 A[i], A[k] = A[k], A[i]
6 return A

Python is a very rich language and provides many built-in functions and methods. It turns
out, that there is already a built-in method reverse, that solves this exercise. Using such a
method, array A can be reversed simply by:

1 A.reverse()

Every lesson will provide you with programming tasks at http://codility.com/programmers.

3


